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Elements of pattern formation in nematic liquid crystal polymers are presented using the Doi-Marrucci-
Greco(DMG) moment-averaged theory. The theory yields a full tensor orientation equation, accounting for
excluded-volume and distortional elasticity potentials, with rotational molecular diffusion. Spinodal decompo-
sition associated with unstable homogeneous phases is described first by way of an exact solution of the
linearized DMG model. A variety of uniaxial and biaxial banded spatial patterns are then explicitly constructed
from the DMG model. Exact solutions are given that possess order parameter spatial variations as well as
solutions whose banded intensity patterns arise from sinuous director heterogeneity. These constructions pose
as analytical models for banded structures observed during and after cessation of simple shear or elongation.

PACS numbd(s): 61.30—v

[. INTRODUCTION Okano(SDO) [6] studied details of spinodal decomposition
from the isotropic phase with a detailed full tensor analysis,
Complex mesophases formed by anisotropic moleculeallowing for a hard-rod interaction potential and translational
have stimulated theoretical interest for many decades. Thmolecular diffusion. They carried out a long-wave expansion
isotropic-to-nematic IcN) phase transition, observed as far near the spinodal point to predict the dominant wavelengths
back as 1888 by Friedrich Reinitzer, was first explained byand orientation tensor modes of instability. Motivated by this
Onsager in 1949. Analysis based on Landau—de Gennes fre@rk, we solve in closed form the linearized Doi-Marrucci-
energieqd 1-3] has been successful in predicting certain be-Greco(DMG) moment-averaged model to predict and com-
havior of liquid crystal polymers, including aspects of phasepare spinodal decomposition from the unstable isotropic and
transitions and spinodal decomposition. The kinetic and conunstable nematic equilibrium phases. Briefly, the physics of
tinuum theories of Hess, Doi and Edwards, Beris and Edthe SDO model versus the DMG model yields significant
wards, and many othefg,2,5 combines a molecular-scale differences in the wavelengths and orientation modes that
description of nematic order with Landau—de Gennes freelominate thd -N transition; the DMG model predictions are
energy expressions posited at relevant length scales. Thesensistent with a homogeneous phase transition without spa-
theories allow one to explain and predict how molecular-tial pattern formation, whereas the SDO model reflects a fi-
scale physics influences and dictates observed mesoscopiite dominant wavelength and orientation tenéoending
behavior. Furthermore, exact analysis and solutions fronmode for the unstable isotropic phase. We then show that the
model equations are useful both to gain insight into observe®MG model applied to the unstable nematic phase suggests
behavior and structures and to say something about the pre-different scenario during spinodal decomposition: there is
dictability of the model itself. The analysis and exact solu-no preferred wavelength, yet there is a preferred orientation
tions provided in this paper are so motivated. mode of instability.
Classical descriptionisl] of I-N phase transitions employ Our main goal in this paper is to derive a hierarchy
a spatially homogeneous uniaxial nematic theory. Here wef exact liquid crystal polymerLCP) patterns from the
focus on more general, full tensor models. Shimada, Doi, an@oi-Marrucci-Greco[7], second-moment-averaged kinetic
theory. Specifically, we describe uniaxial, spatially periodic
striped or banded patterns; uniaxial traveling waves which
*Permanent address: Department of Mathematical Sciences, Indinterpolate in space and time between homogeneous equilib-
ana University-Purdue University Indianapolis, Indianapolis, INrium phases; and fully biaxial, irregularly banded spatial pat-
46202. terns. These analytical constructions arise in two distinct
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ways: through order parameter oscillations with fixed direc-quintic or higher-order potential is assumed, or if a different
tors (optical axey and through director variations with fixed closure rule is employed, the proof below indicates that bi-
order parameters. The latter mechanism has strong expeaxial equilibria cannot be ruled out.

mental confirmation as the origin of shear-induced and Fact All homogeneous equilibria of the DMG modél)

elongation-induced banded structuf8s-11]. are uniaxial.
Proof. SinceQ is symmetric, it can be diagonalized by an
II. DOI-MARRUCCI-GRECO THEORY orthogonal matrixP,
Let Q be the orientation tensor, a second-order, symmet- Q=PTAP, (6)

ric, traceless tensor that describes the average molecular ori-
entation with respect to a probability distributio@.is said  where
to exhibit uniaxial symmetry if two of its eigenvalues are

identical; otherwise, it is said to have biaxial symmetry. The 71
orientation tensor equation in the absence of flows, in the A= Vo ) (7)
Doi-Marrucci-Greco theory2,7] is given by y
3
%Q: - %[F(Q)+ E(Q)], Substituting Eq(6) into F(Q)=0, we have
3 3
T 2 2 N 2
F(Q)=(1-N/3)Q—N(Q-Q)+N(Q:Q)(Q+1/3), (1) PT| —NA2+| 1-N/3+NY, A+ g > Yl|P=0.
i=1 i=1
12 ()

N
E(Q)=— 57[3AQ+3AQ-Q+3Q-AQ

It follows that y4, 7y,, and ys are roots of the quadratic
equation

—(AQ:Q)(Q+1/3)],

. L e N
where\ is therelaxation timerelated to rotary diffusion of a —NX2+(1—N/3+NC)x+ _C =0, 9
rigid-rod moleculeN is the dimensionless polymer concen- 3

tration that dictates the strength of the Maier-Saupe short- hereC=33 42 Si Eq(9) i dratic. i h
range intermolecular potential, ahé the persistence length WNer€-=2i-17i . sihce q(9) is quadratic, it cannot have
or range of the elastic interaction. more than two distinct roots. Thus, two of the eigenvalues

It is customary to seek homogeneous equilibria of pure?1; Y2» @ndys must be identical, which is the definition of

nematic theories by positin@ in a uniaxial representation uniaxiality. i ) )
yP " P The dynamicsof Q, even in a neighborhood of homoge-
Q=s,(nn—3I), 2) neous uniaxial equilibria, is not necessarily uniaxial. Recall

that Q has five independent components, e.g., in a matrix
wheren is the distinguished unit eigenvector & corre-  representation with respect to Cartesian coordinates,
sponding to the unique simple eigenval(proportional to

s,); n is known as the uniaxial director whils, is the Qu Qun Q13
uniaxial order para_lmeteﬁ _%ssu_sl [1_2]. Wit_h this ansqtz, 0=| Qu Qa» Qs _ (10)
the nematodynamic equatioh) yields immediately than is
arbitrary ands, is a zero of the algebraic equation Qiz Qaz —(QutQz)
U(s,) =0, 3) A convenien_t ar_1d useful basis of symmetric, traceless,
rank 2 tensors is given bjy6,15|
where
1 0 O -1 0 O
U(sy)=s[1-N/3(1—sy)(2s,+1)] (4) QW=l0 1 0], @@= 0 1 o0,
defines theuniaxial bulk free energy U(s)ds, correspond- 0 0 -2 0 0 O
ing to a quartic Landau—de Gennes short-range free energy 00 0
potential. Theuniaxial equilibrium branchess functions of
the concentration parametirare given by Q®=|0 0 1f, (12)
0_p & 1+3y1-8/3N 5 I
s;=0, sj=—""—"7—.
! ! 4 010 0 0 1
For quartic short-range potentials, i.e., for homogeneous QW=|1 0 0|, Q®=|0 0 O0f.
tensor fields=(Q) fourth-order inQ, all constant equilibria 0 0 O 1 0 O

are uniaxial. We give a simple proof of this result for the

moment-averaged Doi-Marrucci-Greco model. The result beFrom[6], Q™) is a splay modewith respect toe,, Q) and
low applies to any algebraic closure approximation that preQ*) correspond tawist modes and Q® and Q®®) corre-
serves the order of nonlinearity in moments3,14); if a  spond tobend modesHere this fixed basis plays a funda-
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mental role both in the solution of the linearized DMG sys-distinguished orientation mode during spinodal decomposi-
tem (1) about homogeneous equilibrigec. 11A), and in  tion. Further, note that the spatial dependence of the growth
deriving special classes of nonhomogeneous soluti§es. rates due to the Marrucci-Greco elasticity potential contrib-

1B). utes the term- (N/3)\)K2, analogous to diffusive regulariza-
tion. Only the longest wavelengths have the potential for
A. Spinodal decomposition from unstable homogeneous growth. The physical predictions from the resulis3) and
equilibria (14) are as follows(1) For 0<N< 3, the isotropic phase is

. . . . . stableto all wavelength perturbations, with equal decay rates
The linearized stability of an arbitrary homogeneous equi- gl p g y

libri is determined by Fouri vsis of th ; t|n all tensor modes(2) For N>3, a finite, long-wave band
lorium 1S determined by Fourier analysis ot the constant,e e yector perturbations is unstable,

coefficient, linearization of the tensor partial differential

equation(1). For a given uniaxial equilibriunQ*, we set

4 3
Q=Q* +Q, insert it into Eq.(1), and retain terms linear in 0$||k||2<|—2(1— N/ (19
Q:
_ The |-N transition occurs experimentally &6 increases
dQ 1 (usually through temperature contrplslightly above the

N\ - 2 ~
dat X( ( 1- §>Q_ ﬁAQ_N(Q* Q+Q-Q%) critical valueN~3. The DMG model predicts that the un-
) stable wavelengths are exceedingly long and all tensorial
© = ~ ~ modes behave the same, consistent with a homogernesus
- .O* * | * . )k )
48(AQ Q*+Q*-AQ)+N(Q*:Q%)Q transition with no spatial structure. This is in contrast with
the SDO mode[6], which predicts a dominant finite wave-

~ |2 ~ | Ien th f . L. . . . .
- % * gth of instability, with dominant growth in the bend ori
NI Qt524Q):Q } Q' *3 entation modesQ®®. Thus the physics of these models
I leads to quite distinct spinodal decomposition from the iso-
+N(O* -0 w4 | b 12 tropic _phase, and it appears .that the DMG model is consis-
(Q:Q)1Q 3 } (12 tent with the standard transition to the stable, homogeneous

_ nematic phase.
Then we introduce normal modes of the forr®
:QoewH'k'X, Q, constant. The linearized dispersion rela- 2. The “nematic-to-nematic” transition: Spinodal decomposition
tion (a fifth-order polynomial for w(k,Q*) follows easily. from the unstable anisotropic equilibrium phase

The_r_eal parts of th_e five roots; dete_rmine the Iir_1earized Repeating the analysis for the anisotropic equilitsgjaof
stability of the associated five-dimensional dynamical systerrEq (5), which exist forN=£, we find the explicit growth/
for each wave vectorkl) perturbation. One does not expect dec.:ay 'rates 3

to be able to explicitly factor this fifth-degree dispersion re-

lation nor to explicitly provide the corresponding tensorial 1

eigenfunctions. However, we have the following remarkable wg=— K[U "(sy) +K2(1—s,)(2s,+1)/3], (16)

result first observed by Shimada, Doi, and Ok@Bpin their

linearized analysis of the-N transition for a different physi- 1 K2

cal model. _ w24:__<|\|%+_(|\|_1)), (17)
Fact The basis tenso®(, i=1, ... 5,provide a com- ' A 3

plete set of eigenfunctions for the linearized DMG equation ) )

about arbitrary homogeneous equilibria, with corresponding 1 - Ny Nk 1 K——l Ns.+ ﬁ

growth ratesw; listed below for each equilibrium. @35~ T\ 3 3 302 TR

(18)

where K is defined in Eq.(14). Note once again that the

All five roots of the dispersion equation, i.e., all linearized terms provortional to- K2 arising from the Marrucci-Greco
growth/decay rates, are identical, given as a function of spa- prop 9

. elasticity potential are strictly stabilizing, withw;(0)
tial wave number by > w;(k) for k+0, for all i. We easily deduce the following.

1. Spinodal dynamics of the unstable isotropic phasé&-€0

1 N N , ) (1) The highly aligned nematic phasg is stable for all
W= = 1- 3t §K , i=1,....5, (13)  wave vector perturbations in all tensor modes.
(2) The less aligned nematic phasg is always unstable.
where For §<N<3, s, is a prolate phase, unstable to splay mode
(QM)y perturbations ¢;>0) in an explicit wave number
k|21 band|k|| vs N,I; see Fig. 1. The dominant unstable wave
K2= (14) . g =

number isk=0. ForN>3, s, is an oblate phase, unstable to
twist mode Q®,Q¥) perturbations ,=w,>0), in an
andK is a dimensionless wave number defined with respecéxplicit band of wave numbers; see Fig. 1. The dominant
to the persistence lengthof the elasticity potential. unstable wave number ks=0.

We conclude that all orientation tensor eigenfunctions This completes our analysis of spinodal decomposition
QW experience identical linearized behavior, so there is ndor all spatially homogeneous equilibria of the DMG model

24
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(1). We remark that uniaxial tensor analyses of stability of 1
the oblate phasgl6] yield the misleading result thaf, is
stable forN>3, because the uniaxial theory allows only 0.8
splay model Q) perturbations. In fact, the oblate nematic
phase is never stable, and is likewise not observed experi- 0.6 e
mentally unless a strong field is applied as in planar elonga- v
tional flow[17,18]. 04l ) N
With regard to physical experiments, this calculation re- e instability
veals selected orientation modes in the spinodal dynamics /
. . . - 0.2t K
from the unstable nematic pha&he “nematic-to-nematic ;w ; 0,=0,>0
second-order phase transitjpim contrast with the instability P
properties of the isotropic phase. This exact analysis, based 86 28 3 32 34 36 88

PRE 61

on the physics of the DMG model, indicates that the early N

patterns that result from spinodal decomposition may be FiG. 1. Unstable wave number bands versus LCP concentration
quite different if one first uses an applied field to stabilize any for the nematic equilibrium phasg . The dashed curves indicate
oblate nematic phas@vhich can be accomplished by a pla- marginal stability boundaries. The less ordered nematic phase is
nar elongational flow17,18)), followed by sudden cessation unstable from inception, but the tensor modes of instability switch
of the flow field, after which the results described here pre-at the spinodal poirii=3, from a splay mode long-wave instability
dict the subsequent spinodal decomposition. The stabléor $<N<3 to a twist mode long-wave instability for al>3.
highly aligned homogeneous phase attracts all orientatioffhe persistence length is fixed arbitrarilylat= 24, with the same
modes, but with mode-dependent and wave-numberength units used fok, so thatk =||k|/2.

dependent decay rates. A numerical simulation of the full
dynamical equations near unstable equilibria might be illu-
minating.

1
SU+N

1 1

——+——=]|=0.
s,—1 2s,+1 0

s+ (22

B. Heterogeneous banded patterns Equation(22) is recognized as a Hamiltonian system, with

We now construct the two distinct classes of banded patconserved energy
tern solutions, first due to order parameter variations for
fixed directors, and then due to director variations for fixed
order parameters. These solutions arise by positing a special
form of the orientation tensd®. and potential energjnormalized so thaV(s‘j:O):O]

H(sy,80) = 2(s))?+V(sy), (23

1. Bands arising from order-parameter variations

, 1
V(s,) =3 su+ﬁln[(1—su)2(25u+1)] ) (24)

Periodic, uniaxial patternsThe first construction is of
uniaxial, periodic spatial patterns that form along an arbitrary

wave vector directiork= (ky,ky ,k;). We posit Figure 2 illustrates the shape ®fvs N whereas Fig. 3

gives the corresponding phase portrait of E22). We note
the salient featureg1) For N<%, V is a strictly repulsive
potential and there are no bounded nonconstant solutions of
Eq. (22). (2) For $<N<3, Fig. Ja), the potentiaV devel-
where the uniaxial directan is arbitrary, but constant. Note Ops an attractive well centered at the potential energy mini-
that 6 is a scalar, dimensionless space variable that resolvesums; e (0,7), leading to periodic spatial patterns that os-
variation in the uniaxial order parametes ] along the di- cillate over prolate phases sf, Fig. 3a), centered as, .
rectionk; s, is constant in each plane orthogonalkto (3) For N>3, V has an attractive well centered at the isotro-
If we insert Eq.(19) into the DMG tensor equatiofl),  pic phases?, Fig. Ab), leading to periodic patterns that os-
then a scalar nonlinear reaction-diffusion equation results fogjjjate between prolate and oblate phases, Fig).3
the uniaxial order parametsy;: These periodic solutions are now translated to light scat-
tering intensity patterns to see how they visually compare

24
Q=s,(nn—31), sy(t,0), 6= \/l:k-x, (19

- N " with the significant experimental documentationhbznded
Asy=—U(sy+ Eh(SU)SU ' (20 patterns8—11,19. The range of order parameter values var-
ies with N, while the periodic spacing of the bands depends

where( )= (a/at)(), and (Y =(3/96)(), nonlinearly onN and scales with the persistence lenigthet
()=( )0 O=( )0 I be the transmitted light intensity of a light scattering ex-
h(s,)=(1—5,)(2s,+1)=0. (21) periment for an LCP material; the relative transmitted light

intensity (/1) is related to the normalized birefringensg

All homogeneous equilibrigs) of the DMG model(1) cor- by [20]

respond to the constant solutions of E20). Steady hetero-
geneous patterns are described by the nonconstant steady
states of Eq(20), which is easily manipulated to the form

(25

! =Iosin2( ZWhS“),

light
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FIG. 2. Representative plots of the spatial potential energy func- o
tion V(s), Eq. (24), as a function of the uniaxial order parameter FIG. 3. The phase portrait in the phase spage,| correspond-
for two values of LCP concentratioX: (a) N=2.72; (b) N=4. ing to the potential/(s) in Fig. 2. (a) For §<N<3, there exist
periodic patterns oscillating about the nematic phsse (b) For
h N>3, the periodic patterns oscillate about the unstable isotropic
phases?.

whereh is the sample thickness anggy is the wavelengt
of the incident light. Figure 4 depicts the corresponding pe
riodic pattern for a periodic solution of Figs(&@ and 3a) by
plotting the relative transmitted light intensityl,. The pa-
rameter values used amd=2.72, h=20 um, and \jign
=530 nm(from [20]). At this concentration value dfl, the
isotropic and nematic homogeneous phases are bistabl'ég' (27),
whereas the lower-ordered nematic phase is unstable. Curi- dH 144\ ¢
ously, the patterns oscillate about the unstable nematic —=VH-(s',8")=—
phase. Likewise, foN>3 the periodic spatial patterns oscil- dz
late about the unstable isotropic phase. hich is strictly d ing foe>0 and i ing f
Traveling wave, uniaxial order parameter patterndle which 1S strictly decreasing foc anad increasing foc

now seek a solution of the uniaxial order parameter reaction-<(.)' Routine phas_e plane argume[ﬂi]_ sho_w that_ no peri-
diffusion equation(20) in the forms,=s,(Z), where odic patterns survive foc# 0, but that infinite period, trav-
uoTueEns eling waves emerge foN>$2, which connect one equilib-

rium phase az= —< to another equilibrium phase at=
+o. Due to space limitations, we do not list all of these
isotropic-to-nematic and nematic-to-nematic traveling
waves, but suffice it to say that for each potential energy
shape depicted in Fig. 3 there is a solution that connects each
pair of equilibria[21].

Because of the complicated nonlinearity of EB7), we
@27 cannot produce a closed-form, recognizable expression for

these traveling waves. Representative solutions can be calcu-

The special case=0 corresponds to the previous steady
patterns governed by E@22). For c#0, we evaluate the
directional derivative of the enerd®23) along the solution of

(s")? (29

NI?(1—s)(2s+1)

Z=6—ct (26)

is a traveling wave coordinate, ands a constant speed to be
determined. This yields a “damped nonlinear oscillator”
equation[with ()’ =(d/dZ)()’]

NI? 1
ﬁ(l_su)(23u+l)sﬁ+c%_ XU(SU):O'
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19

0 0.54

20

2 -50 0 ¢

01 02 03 04 05 06 07 08 09 FIG. 5. A traveling wave solution connecting the homogeneous
isotropic equilibriumsﬁzo and the highly aligned anisotropic ho-
mogeneous equilibriuns; =0.6830 for LCP concentration value
N=4. The wave speed i5=2.

FIG. 4. A representative uniaxial, spatially periodic pattern cor-
responding to a periodic solution from FigdaRand 3a) with N
=2.72 and energyi(s) betweenH(s,) and H(sﬁ). The band or
stripe pattern represents the relative transmitted light intensity, E

(25), calculated from the periodic order parameter solution. q‘eglon lllustrated in Fig. 6; this domain is a consequence of

standard eigenvalue inequalities. The teridor Q+ 31, has
identical eigenvectors; as Q, but eigenvalues €d;<1,

lated numerically by a shooting method. An exemplar
y oy g P yzisz ,di=1. The order parametesss are related tal; by

isotropic-to-nematic traveling wave is given in Fig. 5 far
=4,

Heterogeneous biaxial order parameter patterts.is s=d3—d;, pB=d,—d;. (32)
straightforward to lift the previous uniaxial construction to
allow for both order parameters to vary along the wave vecNote that the rational terms in E(B1) become infinite along
tor directionk. For simplicity we fix the directors along the the boundaries of the triangle, analogous to the behavior of

coordinate axes and posit a biaxial form@f the uniaxial equation(22) at the order parameter bounds
—1 and 1, which preserve solutions inside the triangle.
Q=s(ee,—31)+B(gg—3l), (29 Observe that in the limit oN— o, these equation&31)

limit to uncoupled identical harmonic oscillators. This sug-
and suppose the order parametgy$ depend only onf6),  gests that foN large and finite, oscillatory patterns will sur-
whered=k-x. Then the DMG mode(1) reduces to a pair of yjve. In Fig. 6 we give a numerical biaxial pattern solution
one-space-dimensiona), coupled reaction-diffusion equa- for N=8, which has a rich spatial oscillatory behavior. Fig-

tions fors and g [with ()’ =(a/d6)()]: ure 7 depicts the corresponding biaxial patterns by plotting
1 INSB NI2 the relative transmitted intensity functiohg/l, in the n;-n;
si=——|U(s)+ (1—s+8) |+ =——[(1+s— plane, which are defined in EqR5) with s, replaced byd;
oA 3 P b —d; (i,j=1,... 3,i#j):

+sp—2s%)s"+s(s—2B-1)8"], 27h(d,—d;)
i—dj

. 33
Niight 33

(30 | =14 Sir?

2N33'8(1+s—ﬁ)}

1
ﬁt:_i u(p)+

Note that two independent planar measurements are neces-
sary to resolve a fully biaxial pattern.

NI?
+ ﬁ[,3(;;—2s— 1)s"+ (14 B—s+sB—2B%)B"].

N=8

Moreover, steady biaxial patterns are given by solutions
of the coupled second-order ordinary differential equations
(ODES for s,8:

. 24] N 1 1 N 1
ST N\stB-1 " 2s+1-8/ )
(31
L, 24| N 1 1 1
p'= I_z_/g N\s+B8—1" 2B8+1-s/|
Note that the uniaxial periodic patterns of Sec. IIB1 are - 05 0 05 1
recovered in the uniaxial limitssE&s,,B8=0), (s=0,8 °
=s,), ands= B=—s,. All physical biaxial patterns of Eq. FIG. 6. Fully biaxial, steady oscillatory solutions of systé3i)

(31) must have §,8) values that lie inside the triangular for LCP concentration parametbi=8.
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n,-n, plane
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0.6

0.4

0.2

01 02 03 04 05 0.6 .7 0.8 0.9

FIG. 7. Banded intensity patterns in two planar projections con-
structed from the biaxial order parameter solution of Fig. 6. Be- FIG. 8. Banded intensity patterns due to sinuous optical axes,
cause the solution is fully biaxial, the intensity patterns are differencharacterized by Eq$34)—(38). Top: wave vectol’=(1,0,0). Bot-

in each planar projection. tom: wave vectod'=(1,1,0).
36
2. Banded biaxial patterns due to sinuous optical axes - (36)
We now construct banded patterns corresponding to fixed =— 1 U(p)+ ﬁs (1-B+s)+ 2NITy
order parameters and sinuous optical axes. These director-

induced structures are consistent with experiments that show
that bright and dark light scattering regions can be inter- ><s(1—,8—3sﬂ)>.
changed by rotation of samplg22,10.

This family of exact solutions of the DMG theory is cap-
tured by the following orientation tensor form, where we fix
one director &) and allow variation of the director pair in
the x-y plane:

Solutions of these coupled harmonic equati( for n
andm are given by

n=(coqI'- x+ 6,),sin(I"- x+ 6;),0), (37

Q=s(t) n(x,y,z)n(x,y,z)—lg +,8(t)(ezez— I§) m=(—sin(I"- x+ 6y),cogI"- x+ 6;),0), (39

(34  wherex=(x,y,2), 6, is an arbitrary constant, arld is the
spatial wave vector.
In each planeX,y,z) - I'=const and the orientation tensor
Q is identically constant; all variation i takes place along
— .2 2_ 2, .2, .2 the normals given by the wave vectbr Along this direc-
an Yo YENT Y tion, the degrees of orientation are fixed by constant equilib-
(39 ria of thes, 3 ODEs (36), while the optical axes andm
V-on=r-m, T'=(y1,7,,73), exhibit sinuous variations. Note that the order parameter
equilibria (s*,8*) are biaxial because of the perturbative
which then leaves a coupled ODE system for the order paguadratic terms irs, 3 proportional tol2y?. Thus the homo-

The ansatz34) yields exact solutions if we choose the opti-
cal axesn,m,e, to satisfy

rameters §,3): geneous degrees of orientation are coupled to the wave vec-
L N - tor I' of the sinuous optical axes.
__ <N B B Equation(36) has nontrivial biaxial solutionssg0) only
St A Uis)+ 3 SB(L+B=s)+ 3 SiI=8) ), if yl is relatively small, which injects an intriguing link be-
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tween the previously arbitrary wave veciBbrand the persis- @ variety of heterogeneous spatial patterns: uniaxial periodic
tence lengtH of the distortional elasticity potential. banded structures; traveling wave uniaxial patterns; and fully
Figure 8 depicts the intensity pattern, using the relatiorbiaxial, irregularly banded patterns. These spatial structures
(33), for the same parameters as Figs. 6 and 7, with tware natural equilibria of the DMG model that exist in the
different choices of the wave vectdtr. The relation of the balance between excluded-volume and Marrucci-Greco elas-
wave vector to the optical axes determines the structure dfcity potentials. These exact solutions of the DMG model
the intensity pattern. Note that the degrees of orientation ararise in two distinct physical realizations: either from order
picked by the concentration and strength of the two potenparameter variations with fixed optical axes, or through sinu-
tials, leaving the optical axes and wave vector direction freeus optical axes with homogeneous order parameters. Light
to another selection mechanism, which we surmise to be thimtensity patterns reconstructed from these solutions are

orientation of the imposed flow. reminiscent of banded structures observed during and after
cessation of simple shear and elongation flg&s11,19,
IIl. CONCLUSION though the experimental evidence strongly suggests the sinu-

] ~_ous optical axis origin of bands. The analytical results con-
We have analyzed basic elements of pattern formation ifgined here suggest that such structures may have their ori-
liquid crystal polymers by the Doi-Marrucci-Greco, moment- gins in the pure nematic interplay between short-range
averaged theory. We begin with a complete linearized analyexcluded-volume effects and intermediate-range distortional
sis of all homogeneous equilibrium phases. The physics of|asticity; in this scenario applied flow fields then select, as
the DMG model indicates a long-wave instability transition gpposed to create, the observed patterns. The role of these or
fI’OI’n bOth the Unstable iSOtI’OpiC and unstable nematiC equiana|ogous exact Solutions Would be Worth pursuing both as a
libria; thus there is no preference toward spatial patteryuide for understanding mesoscale pattern selection and as a

structure during these phase transitions. The sole distinctioBenchmark for the application of the DMG model.
between the linearized behavior of the isotropic vs the nem-

atic phase is that the isotropic phase experiences instability
in all orientation tensor modes, whereas the nematic phase
has instability only in specific tensor modésplay at low
concentrationg <N< 3, then switching over to twist modes This effort was sponsored by the Air Force Office of Sci-
aboveN=23). entific Research, Air Force Materials Command, USAF, un-
The main focus of the paper is the explicit construction ofder Grant Nos. F49620-97-1-0001 and F49620-99-1-0003.

ACKNOWLEDGMENT

[1] P. G. de Gennesthe Physics of Liquid CrystaiClarendon, [11] C. Viney, A. M. Donald, and A. H. Windle, Polymex6, 870

London, 1974 (1985.

[2] M. Doi and S. F. EdwardsThe Theory of Polymer Dynamics [12] M. G. Forest, Q. Wang, and S. Bechtel, Physic®d® 527
(Clarendon, London, 1986 (1997.

[3] A. Grosberg and A. KhokhlovStatistical Physics of Macro- [13] E. J. Hinch and L. G. Leal, J. Fluid Mecfi6, 187 (1976.
moleculegAIP, New York, 1994. [14] Q. Wang, J. Non-Newtonian Fluid Meci2, 141(1997.

[4] A. N. Beris and B. J. Edwards hermodynamics of Flowing [15] A. Sonnet, A. Killian, and A. Hess, Phys. Rev. 22, 718
Systems with Internal Microstructure€@xford University (1995.
Press, New York, 1994 [16] See H. M. Doi and R. G. Larson, J. Chem. Ph9g, 792

[5] S. Hess, Z. Naturforsch. 81, 1034(1976. (1990.

[6] T. Shimada, M. Doi, and K. Okano, J. Chem. Ph§8, 7181 [17] M. G. Forest, Q. Wang, and H. Zhou, Phys. Fluitz 490
(1988. (2000.

[7] G. Marrucci and F. Greco, Mol. Cryst. Lig. Crys206, 17 [18] A. Rey, Macromol. Theory Simul4, 857 (1995.
(1991 [19] J. Houet al, Polymer35, 699 (1994.

[8] A. M. Donald and A. H. WindleLiquid Crystalline Polymers [20] P. T. Mather, A. Romo-Uribe, C. D. Han, and S. S. Kim,
(Cambridge University Press, Cambridge, 1992 Macromolecules30, 7977(1997.

[9] R. G. Larson,The Structure and Rheology of Complex Fluids [21] J. Smoller, Shock Waves and Reaction-diffusion Equations
(Oxford University Press, London, 1999 (Springer-Verlag, New York, 1994

[10] C. Viney, A. M. Donald, and A. H. Windle, J. Mater. Sdi§, [22] P. Mather, W. Burghardt, and A. Rejprivate communica-
1136(1983. tions).



